Files
deadlyboringmath.us/site/compass-angle-hell.html
Tyler Clarke 81608a95f8
All checks were successful
Build / Build-Docker-Image (push) Successful in 37s
biiiig change [now we're a sitix project]
2025-03-11 16:35:53 -04:00

346 lines
45 KiB
HTML
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1 plus MathML 2.0//EN" "http://www.w3.org/Math/DTD/mathml2/xhtml-math11-f.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" lang="en-US">
<!--This file was converted to xhtml by LibreOffice - see https://cgit.freedesktop.org/libreoffice/core/tree/filter/source/xslt for the code.-->
<head profile="http://dublincore.org/documents/dcmi-terms/">
<meta http-equiv="Content-Type" content="application/xhtml+xml; charset=utf-8"/>
<title xml:lang="en-US">- no title specified</title>
<meta name="DCTERMS.title" content="" xml:lang="en-US"/>
<meta name="DCTERMS.language" content="en-US" scheme="DCTERMS.RFC4646"/>
<meta name="DCTERMS.source" content="http://xml.openoffice.org/odf2xhtml"/>
<meta name="DCTERMS.issued" content="2025-03-07T12:36:55.052635005" scheme="DCTERMS.W3CDTF"/>
<meta name="DCTERMS.modified" content="2025-03-07T14:44:03.076224426" scheme="DCTERMS.W3CDTF"/>
<meta name="xsl:vendor" content="libxslt"/>
<link rel="schema.DC" href="http://purl.org/dc/elements/1.1/" hreflang="en"/>
<link rel="schema.DCTERMS" href="http://purl.org/dc/terms/" hreflang="en"/>
<link rel="schema.DCTYPE" href="http://purl.org/dc/dcmitype/" hreflang="en"/>
<link rel="schema.DCAM" href="http://purl.org/dc/dcam/" hreflang="en"/>
<style>
table { border-collapse:collapse; border-spacing:0; empty-cells:show }
td, th { vertical-align:top; font-size:12pt;}
h1, h2, h3, h4, h5, h6 { clear:both;}
ol, ul { margin:0; padding:0;}
li { list-style: none; margin:0; padding:0;}
span.footnodeNumber { padding-right:1em; }
span.annotation_style_by_filter { font-size:95%; font-family:Arial; background-color:#fff000; margin:0; border:0; padding:0; }
span.heading_numbering { margin-right: 0.8rem; }* { margin:0;}
.graphic-fr1{ background-color:transparent; font-size:12pt; font-family:'Liberation Serif'; vertical-align:top; writing-mode:horizontal-tb; direction:ltr; }
.graphic-fr2{ background-color:transparent; font-size:12pt; margin-left:0in; margin-right:0in; font-family:'Liberation Serif'; vertical-align:top; writing-mode:horizontal-tb; direction:ltr; }
.paragraph-P1{ font-size:12pt; font-family:'Liberation Serif'; writing-mode:horizontal-tb; direction:ltr;font-weight:bold; }
.paragraph-P2{ font-size:12pt; font-family:'Liberation Serif'; writing-mode:horizontal-tb; direction:ltr;font-weight:normal; }
.paragraph-P3{ font-size:12pt; font-family:'Liberation Serif'; writing-mode:horizontal-tb; direction:ltr;font-style:normal; font-weight:normal; }
.paragraph-P4{ font-size:12pt; font-family:'Liberation Serif'; writing-mode:horizontal-tb; direction:ltr;}
.paragraph-P5{ font-size:12pt; font-family:'Liberation Serif'; writing-mode:horizontal-tb; direction:ltr;}
.paragraph-P6{ font-size:12pt; font-family:'Liberation Serif'; writing-mode:horizontal-tb; direction:ltr;}
.text-T1{ font-style:italic; }
.text-T2{ font-style:normal; }
.text-T3{ font-style:normal; text-decoration:none ! important; font-weight:normal; }
.text-T4{ font-style:normal; text-decoration:none ! important; font-weight:normal; }
.text-T5{ font-style:italic; text-decoration:none ! important; font-weight:normal; }
.text-T6{ font-style:normal; text-decoration:none ! important; font-weight:normal; }
/* ODF styles with no properties representable as CSS:
.dp1 { } */
</style>
</head>
<body dir="ltr" style="max-width:8.5in;margin-top:0.7874in; margin-bottom:0.7874in; margin-left:0.7874in; margin-right:0.7874in; ">
<p class="paragraph-P1">Compass Angle Hell</p>
<p class="paragraph-P2">by Tyler Clarke</p>
<p class="paragraph-P2"> </p>
<p class="paragraph-P2">Well, <span class="text-T1">je suis retourné</span><span class="text-T2">! The exam went well, and although Im not sure what I got exactly, I think it was probably good. One thing I noticed was an uncomfortable amount of trigonometry: I had to derive polar coordinate forms for a translated circle, among other things. Fortunately, trig was always a strong suit.</span></p>
<p class="paragraph-P3">My other classes seem to be picking up on the trig craze too, which is in fact why Im here: the very first question on my homework set for this week in Physics (yeah, I know Im doing it pretty late, shoot me) requires finding the magnetic dipole of a bar magnet… knowing nothing but the local strength of the earths magnetic field, and the angle of a compass affected by both.</p>
<p class="paragraph-P3">The problem is not too hard from a trigonometry perspective, but there are a few stumbling blocks. Rather than trust my geometric intuition, I drew this handy lil diagram:</p>
<!--Next 'div' was a 'text:p'.-->
<div class="paragraph-P2">
<!--Next 'div' is a draw:frame. -->
<div style="height:4.3035in;width:4.8366in; padding:0; float:left; position:relative; left:-0.173cm; top:0.1011cm; " class="graphic-fr1" id="Image1"><img style="height:10.9309cm;width:12.285cm;" alt="" src=""/></div><div style="clear:both; line-height:0; width:0; height:0; margin:0; padding:0;"> </div><span class="text-T2"/></div>
<p class="paragraph-P2"><span class="text-T2"/></p>
<p class="paragraph-P2"><span class="text-T2"/></p>
<p class="paragraph-P2"><span class="text-T2"/></p>
<p class="paragraph-P2"><span class="text-T2"/></p>
<p class="paragraph-P2"><span class="text-T2"/></p>
<p class="paragraph-P2"><span class="text-T2"/></p>
<p class="paragraph-P2"><span class="text-T2"/></p>
<p class="paragraph-P2"><span class="text-T2"/></p>
<p class="paragraph-P2"><span class="text-T2"/></p>
<p class="paragraph-P2"><span class="text-T2"/></p>
<p class="paragraph-P2"><span class="text-T2"/></p>
<p class="paragraph-P2"><span class="text-T2"/></p>
<p class="paragraph-P2"><span class="text-T2"/></p>
<p class="paragraph-P2"><span class="text-T2"/></p>
<p class="paragraph-P2"><span class="text-T2"/></p>
<p class="paragraph-P2"><span class="text-T2"/></p>
<p class="paragraph-P2"><span class="text-T2"/></p>
<p class="paragraph-P2"><span class="text-T2"/></p>
<p class="paragraph-P2"><span class="text-T2"/></p>
<p class="paragraph-P2"><span class="text-T2"/></p>
<p class="paragraph-P2"><span class="text-T2"/></p>
<p class="paragraph-P2"><span class="text-T2"/></p>
<!--Next 'div' was a 'text:p'.-->
<div class="paragraph-P4"><span class="text-T3">We know that the magnetic field of the Earth is 3e-5 Tesla at the observation point (the origin), the bar magnet is at </span>
<!--Next 'span' is a draw:frame. -->
<span id="Object1"><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline">
<mrow>
<mo fence="true" form="prefix" stretchy="false">[</mo>
<mrow>
<mrow>
<mrow>
<mo stretchy="false"></mo>
<mn>0.189</mn>
</mrow>
<mi>,</mi>
<mn>0</mn>
<mi>,</mi>
<mn>0</mn>
</mrow>
</mrow>
<mo fence="true" form="postfix" stretchy="false">]</mo>
</mrow>
</math> </span><span class="text-T3">, and the angle between the total field and the magnet is 13.4deg. To find the magnetic dipole, well work backwards from magnetic field and distance. The equation relating the values is </span>
<!--Next 'span' is a draw:frame. -->
<span id="Object2"><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline">
<mrow>
<mi>tan</mi>
<mrow>
<mrow>
<mo fence="true" form="prefix" stretchy="false">(</mo>
<mrow>
<mi>θ</mi>
</mrow>
<mo fence="true" form="postfix" stretchy="false">)</mo>
</mrow>
<mo stretchy="false">=</mo>
<mfrac>
<msub>
<mi>b</mi>
<mi mathvariant="italic">earth</mi>
</msub>
<msub>
<mi>b</mi>
<mi mathvariant="italic">mag</mi>
</msub>
</mfrac>
</mrow>
</mrow>
</math> </span><span class="text-T3"> (one of the basic trig relationships). Because we know</span>
<!--Next 'span' is a draw:frame. -->
<span id="Object4"><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline">
<msub>
<mi>b</mi>
<mi mathvariant="italic">earth</mi>
</msub>
</math> </span><span class="text-T3">, and we know </span>
<!--Next 'span' is a draw:frame. -->
<span id="Object3"><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline">
<mi>θ</mi>
</math> </span><span class="text-T3">, this can be algebrad to get </span>
<!--Next 'span' is a draw:frame. -->
<span id="Object5"><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline">
<mrow>
<msub>
<mi>b</mi>
<mi mathvariant="italic">mag</mi>
</msub>
<mo stretchy="false">=</mo>
<mfrac>
<msub>
<mi>b</mi>
<mi mathvariant="italic">earth</mi>
</msub>
<mrow>
<mi>tan</mi>
<mrow>
<mo fence="true" form="prefix" stretchy="false">(</mo>
<mrow>
<mi>θ</mi>
</mrow>
<mo fence="true" form="postfix" stretchy="false">)</mo>
</mrow>
</mrow>
</mfrac>
<mo stretchy="false">=</mo>
<mfrac>
<mn>3e-5</mn>
<mrow>
<mi>tan</mi>
<mrow>
<mo fence="true" form="prefix" stretchy="false">(</mo>
<mrow>
<mn>13.4</mn>
</mrow>
<mo fence="true" form="postfix" stretchy="false">)</mo>
</mrow>
</mrow>
</mfrac>
</mrow>
</math> </span><span class="text-T3">. This evaluates “nicely” to 1.2592681e-4. Great.</span></div>
<!--Next 'div' was a 'text:p'.-->
<div class="paragraph-P5"><span class="text-T4">Unfortunately, this isnt the final answer: we need the magnitude of the </span><span class="text-T5">magnetic dipole moment</span><span class="text-T4">, not the </span><span class="text-T5">magnetic field</span><span class="text-T4">. Theres a handy fact about magnets that becomes useful here: for a distance </span>
<!--Next 'span' is a draw:frame. -->
<span id="Object6"><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline">
<mrow>
<mi>r</mi>
<mo stretchy="false"></mo>
<mi>s</mi>
</mrow>
</math> </span><span class="text-T4"> (where </span><span class="text-T5">s</span><span class="text-T4"> is the length of the magnet), the magnetic field on the parallel axis is just </span>
<!--Next 'span' is a draw:frame. -->
<span id="Object7"><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline">
<mrow>
<msub>
<mi>k</mi>
<mi>m</mi>
</msub>
<mfrac>
<mrow>
<mn>2</mn>
<mi>u</mi>
</mrow>
<msup>
<mi>r</mi>
<mn>3</mn>
</msup>
</mfrac>
</mrow>
</math> </span><span class="text-T4">, where </span><span class="text-T5">u</span><span class="text-T4"> is the magnitude of the magnetic dipole moment and </span><span class="text-T5">r</span><span class="text-T4"> is the distance (which, handily, we know). This works </span><span class="text-T4">out to an equation </span>
<!--Next 'span' is a draw:frame. -->
<span id="Object8"><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline">
<mrow>
<mrow>
<mn>1.2592681e-4</mn>
<mo stretchy="false">=</mo>
<msub>
<mi>k</mi>
<mi>m</mi>
</msub>
</mrow>
<mfrac>
<mrow>
<mn>2</mn>
<mi>u</mi>
</mrow>
<msup>
<mi>r</mi>
<mn>3</mn>
</msup>
</mfrac>
<mo stretchy="false"></mo>
<mrow>
<mi>u</mi>
<mo stretchy="false">=</mo>
<mfrac>
<mn>1.2592681e-4</mn>
<mrow>
<mn>2</mn>
<msub>
<mi>k</mi>
<mi>m</mi>
</msub>
</mrow>
</mfrac>
</mrow>
<msup>
<mi>r</mi>
<mn>3</mn>
</msup>
</mrow>
</math> </span><span class="text-T4">. </span>
<!--Next 'span' is a draw:frame. -->
<span id="Object9"><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline">
<msub>
<mi>k</mi>
<mi>m</mi>
</msub>
</math> </span><span class="text-T4"> is just the magnetic constant </span>
<!--Next 'span' is a draw:frame. -->
<span id="Object10"><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline">
<mrow>
<mfrac>
<msub>
<mi>u</mi>
<mn>0</mn>
</msub>
<mrow>
<mn>4</mn>
<mi>π</mi>
</mrow>
</mfrac>
<mo stretchy="false">=</mo>
<mn>1e-7</mn>
</mrow>
</math> </span><span class="text-T4">, and </span><span class="text-T5">r</span><span class="text-T4"> is -</span><span class="text-T6">0.189</span><span class="text-T4"> (see above), so the magnitude of the dipole moment must be </span>
<!--Next 'span' is a draw:frame. -->
<span id="Object11"><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline">
<mrow>
<mrow>
<mi>u</mi>
<mo stretchy="false">=</mo>
<msup>
<mrow>
<mo fence="true" form="prefix" stretchy="false">(</mo>
<mrow>
<mrow>
<mo stretchy="false"></mo>
<mn>0.189</mn>
</mrow>
</mrow>
<mo fence="true" form="postfix" stretchy="false">)</mo>
</mrow>
<mn>3</mn>
</msup>
</mrow>
<mrow>
<mfrac>
<mn>1.2592681e-4</mn>
<mn>2e-7</mn>
</mfrac>
<mo stretchy="false">=</mo>
<mrow>
<mo stretchy="false"></mo>
<mn>4.25082884311</mn>
</mrow>
</mrow>
</mrow>
</math> </span><span class="text-T4">. </span><span class="text-T6">Yay for horrible trigonometry!</span></div>
<p class="paragraph-P6"><span class="text-T4"/></p>
</body>
</html>