Files
deadlyboringmath.us/site/mathin-a-cos-rose.html
Tyler Clarke 81608a95f8
All checks were successful
Build / Build-Docker-Image (push) Successful in 37s
biiiig change [now we're a sitix project]
2025-03-11 16:35:53 -04:00

701 lines
74 KiB
HTML
Raw Permalink Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1 plus MathML 2.0//EN" "http://www.w3.org/Math/DTD/mathml2/xhtml-math11-f.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" lang="en-US">
<!--This file was converted to xhtml by LibreOffice - see https://cgit.freedesktop.org/libreoffice/core/tree/filter/source/xslt for the code.-->
<head profile="http://dublincore.org/documents/dcmi-terms/">
<meta http-equiv="Content-Type" content="application/xhtml+xml; charset=utf-8"/>
<title xml:lang="en-US">- no title specified</title>
<meta name="DCTERMS.title" content="" xml:lang="en-US"/>
<meta name="DCTERMS.language" content="en-US" scheme="DCTERMS.RFC4646"/>
<meta name="DCTERMS.source" content="http://xml.openoffice.org/odf2xhtml"/>
<meta name="DCTERMS.issued" content="2025-03-04T10:53:38.700427317" scheme="DCTERMS.W3CDTF"/>
<meta name="DCTERMS.modified" content="2025-03-04T11:42:34.856681643" scheme="DCTERMS.W3CDTF"/>
<meta name="xsl:vendor" content="libxslt"/>
<link rel="schema.DC" href="http://purl.org/dc/elements/1.1/" hreflang="en"/>
<link rel="schema.DCTERMS" href="http://purl.org/dc/terms/" hreflang="en"/>
<link rel="schema.DCTYPE" href="http://purl.org/dc/dcmitype/" hreflang="en"/>
<link rel="schema.DCAM" href="http://purl.org/dc/dcam/" hreflang="en"/>
<style>
table { border-collapse:collapse; border-spacing:0; empty-cells:show }
td, th { vertical-align:top; font-size:12pt;}
h1, h2, h3, h4, h5, h6 { clear:both;}
ol, ul { margin:0; padding:0;}
li { list-style: none; margin:0; padding:0;}
span.footnodeNumber { padding-right:1em; }
span.annotation_style_by_filter { font-size:95%; font-family:Arial; background-color:#fff000; margin:0; border:0; padding:0; }
span.heading_numbering { margin-right: 0.8rem; }* { margin:0;}
.graphic-fr1{ background-color:transparent; font-size:12pt; margin-left:0in; margin-right:0in; font-family:'Liberation Serif'; vertical-align:top; writing-mode:horizontal-tb; direction:ltr; }
.graphic-fr2{ background-color:transparent; font-size:12pt; font-family:'Liberation Serif'; vertical-align:top; writing-mode:horizontal-tb; direction:ltr; }
.paragraph-P1{ font-size:12pt; font-family:'Liberation Serif'; writing-mode:horizontal-tb; direction:ltr;margin-top:0.0398in; margin-bottom:0.0398in; font-weight:bold; }
.paragraph-P2{ font-size:12pt; font-family:'Liberation Serif'; writing-mode:horizontal-tb; direction:ltr;margin-top:0.0398in; margin-bottom:0.0398in; font-weight:normal; }
.paragraph-P3{ font-size:12pt; font-family:'Liberation Serif'; writing-mode:horizontal-tb; direction:ltr;margin-top:0.0398in; margin-bottom:0.0398in; font-weight:normal; }
.paragraph-P4{ font-size:12pt; font-family:'Liberation Serif'; writing-mode:horizontal-tb; direction:ltr;margin-top:0.0398in; margin-bottom:0.0398in; }
.paragraph-P5{ font-size:12pt; font-family:'Liberation Serif'; writing-mode:horizontal-tb; direction:ltr; margin-top:0.0398in; margin-bottom:0.0398in; }
.paragraph-P6{ font-size:12pt; font-family:'Liberation Serif'; writing-mode:horizontal-tb; direction:ltr; margin-top:0.0398in; margin-bottom:0.0398in; }
.paragraph-P7{ font-size:12pt; font-family:'Liberation Serif'; writing-mode:horizontal-tb; direction:ltr; margin-top:0.0398in; margin-bottom:0.0398in; }
.paragraph-P8{ font-size:12pt; font-family:'Liberation Serif'; writing-mode:horizontal-tb; direction:ltr; margin-top:0.0398in; margin-bottom:0.0398in; }
.text-Internet_20_link{ color:#000080; text-decoration:underline; }
.text-T1{ font-style:italic; }
.text-T10{ font-weight:normal; }
.text-T11{ font-style:italic; text-decoration:none ! important; font-weight:normal; }
.text-T12{ font-style:normal; text-decoration:none ! important; font-weight:normal; }
.text-T13{ font-style:normal; text-decoration:none ! important; font-weight:normal; }
.text-T14{ font-family:'Liberation Mono'; font-size:11pt; font-style:normal; text-decoration:none ! important; font-weight:normal; }
.text-T15{ font-family:'Liberation Serif'; font-size:12pt; font-style:normal; text-decoration:none ! important; font-weight:normal; }
.text-T16{ font-family:'Liberation Serif'; font-size:12pt; font-style:italic; text-decoration:none ! important; font-weight:normal; }
.text-T17{ font-family:'Liberation Serif'; font-size:12pt; font-style:normal; text-decoration:none ! important; font-weight:normal; }
.text-T18{ font-family:'Liberation Serif'; font-size:12pt; font-style:italic; text-decoration:none ! important; font-weight:normal; }
.text-T19{ font-family:'Liberation Serif'; font-size:12pt; font-style:italic; text-decoration:none ! important; font-weight:bold; }
.text-T2{ font-style:normal; }
.text-T20{ font-family:'Liberation Serif'; font-size:12pt; font-style:normal; text-decoration:none ! important; font-weight:normal; }
.text-T21{ font-family:'Liberation Serif'; font-size:12pt; font-style:normal; text-decoration:none ! important; font-weight:normal; }
.text-T3{ font-style:normal; }
.text-T4{ font-style:normal; font-weight:normal; }
.text-T5{ font-style:italic; font-weight:normal; }
.text-T6{ font-style:normal; font-weight:normal; }
.text-T9{ font-weight:bold; }
/* ODF styles with no properties representable as CSS:
.T7 .T8 { } */
</style>
</head>
<body dir="ltr" style="max-width:8.5in;margin-top:0.7874in; margin-bottom:0.7874in; margin-left:0.7874in; margin-right:0.7874in; ">
<p class="paragraph-P1">Mathin a Cos Rose</p>
<p class="paragraph-P2">by Tyler Clarke</p>
<p class="paragraph-P2"> </p>
<p class="paragraph-P2">Got me a multivariable calculus exam coming up soon. Most of the material is pretty simple lagrange multipliers, for instance (Ill be writing something about those soon) but Ive got one particular problem regarding integrating with radial coordinates thats hard and interesting.</p>
<!--Next 'div' was a 'text:p'.-->
<div class="paragraph-P2">Im asked to find the area of a single loop of a <span class="text-T1">rose</span><span class="text-T2"> described in radial coordinates by </span>
<!--Next 'span' is a draw:frame. -->
<span id="Object1"><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline">
<mrow>
<mrow>
<mi>r</mi>
<mo stretchy="false">=</mo>
<mn>5</mn>
</mrow>
<mi>cos</mi>
<mrow>
<mo fence="true" form="prefix" stretchy="false">(</mo>
<mrow>
<mrow>
<mn>3</mn>
<mi>θ</mi>
</mrow>
</mrow>
<mo fence="true" form="postfix" stretchy="false">)</mo>
</mrow>
</mrow>
</math> </span><span class="text-T2">. </span><span class="text-T3">This is difficult to visualize, but luck hath smiled upon us, and Desmos supports radial coordinates:</span></div>
<!--Next 'div' was a 'text:p'.-->
<div class="paragraph-P2">
<!--Next 'div' is a draw:frame. -->
<div style="height:3.5909in;width:3.8638in; padding:0; float:left; position:relative; left:4.0749cm; top:0.161cm; " class="graphic-fr2" id="Image1"><img style="height:9.120900000000001cm;width:9.8141cm;" alt="" src=""/></div><div style="clear:both; line-height:0; width:0; height:0; margin:0; padding:0;"> </div><span class="text-T3"/></div>
<p class="paragraph-P2"><span class="text-T3"/></p>
<p class="paragraph-P2"><span class="text-T3"/></p>
<p class="paragraph-P2"><span class="text-T3"/></p>
<p class="paragraph-P2"><span class="text-T3"/></p>
<p class="paragraph-P2"><span class="text-T3"/></p>
<p class="paragraph-P2"><span class="text-T3"/></p>
<p class="paragraph-P2"><span class="text-T3"/></p>
<p class="paragraph-P2"><span class="text-T3"/></p>
<p class="paragraph-P2"><span class="text-T3"/></p>
<p class="paragraph-P2"><span class="text-T3"/></p>
<p class="paragraph-P2"><span class="text-T3"/></p>
<p class="paragraph-P2"><span class="text-T3"/></p>
<p class="paragraph-P2"><span class="text-T3"/></p>
<p class="paragraph-P2"><span class="text-T3"/></p>
<p class="paragraph-P3"><span class="text-T2">Not too bad. The maximum extent would appear to be 5, which makes sense, because cosine maxes out at 1 and we multiply by 5. I was a bit curious to see if the multiplier of theta controls the number of loops as it turns out, the relation is a bit complicated, and I wont get into that now.</span></p>
<!--Next 'div' was a 'text:p'.-->
<div class="paragraph-P4"><span class="text-T4">Its looking to me like the best solution here is to integrate for </span>
<!--Next 'span' is a draw:frame. -->
<span id="Object2"><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline">
<mrow>
<mfrac>
<mrow>
<mo stretchy="false"></mo>
<mi>π</mi>
</mrow>
<mn>2</mn>
</mfrac>
<mo stretchy="false"></mo>
<mi>θ</mi>
<mo stretchy="false"></mo>
<mfrac>
<mi>π</mi>
<mn>2</mn>
</mfrac>
</mrow>
</math> </span><span class="text-T4">, to grab that petal in the first and fourth quadrants, but Im worried that that isnt a </span><span class="text-T5">general</span><span class="text-T4"> enough solution: other roses that Ive got to graph might not be so conveniently situated. The more general way I can think of is integrating for all theta and dividing by the number of petals which isnt necessarily easily predictable for all theta, but is a damn sight better than just </span><span class="text-T5">hoping</span><span class="text-T4"> my hand-drawn sketches appropriately capture the useful quadrants. </span><span class="text-T6">Regardless, lets do the first idea first, and see how it works out.</span><span class="text-T4"> In this case, we </span><span class="text-T5">know</span><span class="text-T4"> there are 3 petals, so the integral should be </span>
<!--Next 'span' is a draw:frame. -->
<span id="Object3"><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline">
<mrow>
<mrow>
<munderover>
<mo stretchy="false"></mo>
<mfrac>
<mrow>
<mo stretchy="false"></mo>
<mi>π</mi>
</mrow>
<mn>2</mn>
</mfrac>
<mfrac>
<mi>π</mi>
<mn>2</mn>
</mfrac>
</munderover>
<mrow>
<munderover>
<mo stretchy="false"></mo>
<mn>0</mn>
<mrow>
<mn>5</mn>
<mi>cos</mi>
<mrow>
<mo fence="true" form="prefix" stretchy="false">(</mo>
<mrow>
<mrow>
<mn>3</mn>
<mi>θ</mi>
</mrow>
</mrow>
<mo fence="true" form="postfix" stretchy="false">)</mo>
</mrow>
</mrow>
</munderover>
<mi>r</mi>
</mrow>
</mrow>
<mi mathvariant="italic">dr</mi>
<mi>d</mi>
<mi>θ</mi>
</mrow>
</math> </span><span class="text-T4">. Why  </span>
<!--Next 'span' is a draw:frame. -->
<span id="Object4"><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline">
<mrow>
<mi>r</mi>
<mi mathvariant="italic">dr</mi>
<mi>d</mi>
<mi>θ</mi>
</mrow>
</math> </span><span class="text-T4"> instead of just  </span>
<!--Next 'span' is a draw:frame. -->
<span id="Object5"><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline">
<mrow>
<mn>1</mn>
<mi mathvariant="italic">dr</mi>
<mi>d</mi>
<mi>θ</mi>
</mrow>
</math> </span><span class="text-T4">? Because of the shape of the mesh were integrating; I wont elaborate, but only because </span><a href="https://tutorial.math.lamar.edu/classes/calciii/dipolarcoords.aspx" class="text-Internet_20_link"><span class="text-T4">Paul's Online Math Notes</span></a> <span class="text-T7">already did.</span></div>
<!--Next 'div' was a 'text:p'.-->
<div class="paragraph-P5">Integrating this isnt too hard. The inner integral is simply
<!--Next 'span' is a draw:frame. -->
<span id="Object6"><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline">
<mrow>
<mrow>
<mrow>
<munderover>
<mo stretchy="false"></mo>
<mn>0</mn>
<mrow>
<mn>5</mn>
<mi>cos</mi>
<mrow>
<mo fence="true" form="prefix" stretchy="false">(</mo>
<mrow>
<mrow>
<mn>3</mn>
<mi>θ</mi>
</mrow>
</mrow>
<mo fence="true" form="postfix" stretchy="false">)</mo>
</mrow>
</mrow>
</munderover>
<mi>r</mi>
</mrow>
<mi mathvariant="italic">dr</mi>
<mo stretchy="false"></mo>
</mrow>
<mrow>
<msubsup>
<mrow>
<mrow>
<mfrac>
<msup>
<mi>r</mi>
<mn>2</mn>
</msup>
<mn>2</mn>
</mfrac>
</mrow>
<mo fence="true" form="postfix" stretchy="true">|</mo>
</mrow>
<mn>0</mn>
<mrow>
<mn>5</mn>
<mi>cos</mi>
<mrow>
<mo fence="true" form="prefix" stretchy="false">(</mo>
<mrow>
<mrow>
<mn>3</mn>
<mi>θ</mi>
</mrow>
</mrow>
<mo fence="true" form="postfix" stretchy="false">)</mo>
</mrow>
</mrow>
</msubsup>
<mo stretchy="false"></mo>
<mfrac>
<mn>25</mn>
<mn>2</mn>
</mfrac>
<msup>
<mi>cos</mi>
<mn>2</mn>
</msup>
<mrow>
<mo fence="true" form="prefix" stretchy="false">(</mo>
<mrow>
<mrow>
<mn>3</mn>
<mi>θ</mi>
</mrow>
</mrow>
<mo fence="true" form="postfix" stretchy="false">)</mo>
</mrow>
</mrow>
</mrow>
</math> </span>, giving us
<!--Next 'span' is a draw:frame. -->
<span id="Object7"><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline">
<mrow>
<mfrac>
<mn>25</mn>
<mn>2</mn>
</mfrac>
<mrow>
<munderover>
<mo stretchy="false"></mo>
<mfrac>
<mrow>
<mo stretchy="false"></mo>
<mi>π</mi>
</mrow>
<mn>2</mn>
</mfrac>
<mfrac>
<mi>π</mi>
<mn>2</mn>
</mfrac>
</munderover>
<msup>
<mi>cos</mi>
<mn>2</mn>
</msup>
</mrow>
<mrow>
<mo fence="true" form="prefix" stretchy="false">(</mo>
<mrow>
<mrow>
<mn>3</mn>
<mi>θ</mi>
</mrow>
</mrow>
<mo fence="true" form="postfix" stretchy="false">)</mo>
</mrow>
<mi>d</mi>
<mi>θ</mi>
</mrow>
</math> </span>. <span class="text-T8">This is kind of a nasty trig integral, one which I very much dont want to derive myself, but thats what Wolfram is for! Wolfram kindly tells me that my disgusting integral is </span>
<!--Next 'span' is a draw:frame. -->
<span id="Object8"><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline">
<msubsup>
<mrow>
<mrow>
<mrow>
<mfrac>
<mn>25</mn>
<mn>24</mn>
</mfrac>
<mrow>
<mo fence="true" form="prefix" stretchy="false">(</mo>
<mrow>
<mrow>
<mn>6</mn>
<mrow>
<mi>θ</mi>
<mo stretchy="false">+</mo>
<mi>sin</mi>
</mrow>
<mrow>
<mo fence="true" form="prefix" stretchy="false">(</mo>
<mrow>
<mrow>
<mn>6</mn>
<mi>θ</mi>
</mrow>
</mrow>
<mo fence="true" form="postfix" stretchy="false">)</mo>
</mrow>
</mrow>
</mrow>
<mo fence="true" form="postfix" stretchy="false">)</mo>
</mrow>
</mrow>
</mrow>
<mo fence="true" form="postfix" stretchy="true">|</mo>
</mrow>
<mfrac>
<mrow>
<mo stretchy="false"></mo>
<mi>π</mi>
</mrow>
<mn>2</mn>
</mfrac>
<mfrac>
<mi>π</mi>
<mn>2</mn>
</mfrac>
</msubsup>
</math> </span><span class="text-T8">. Because </span>
<!--Next 'span' is a draw:frame. -->
<span id="Object9"><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline">
<mrow>
<mi>sin</mi>
<mrow>
<mrow>
<mo fence="true" form="prefix" stretchy="false">(</mo>
<mrow>
<mrow>
<mn>3</mn>
<mi>π</mi>
</mrow>
</mrow>
<mo fence="true" form="postfix" stretchy="false">)</mo>
</mrow>
<mo stretchy="false">=</mo>
<mn>0</mn>
</mrow>
</mrow>
</math> </span><span class="text-T8">, this works out nicely to… </span>
<!--Next 'span' is a draw:frame. -->
<span id="Object10"><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline">
<mrow>
<mfrac>
<mn>25</mn>
<mn>24</mn>
</mfrac>
<mn>6</mn>
<mrow>
<mi>π</mi>
<mo stretchy="false">=</mo>
<mfrac>
<mn>25</mn>
<mn>4</mn>
</mfrac>
</mrow>
<mi>π</mi>
</mrow>
</math> </span><span class="text-T8">. </span><span class="text-T9">This is wrong.</span></div>
<p class="paragraph-P6"><span class="text-T10">Ive kept the wrong work up because its </span><span class="text-T11">subtly</span><span class="text-T12"> wrong, and (I think) does a pretty good job of illustrating one of the most annoying problems with polar coordinates. Do you see it?</span></p>
<!--Next 'div' was a 'text:p'.-->
<div class="paragraph-P7"><span class="text-T13">The problem lies in how cosine behaves with multipliers. </span>
<!--Next 'span' is a draw:frame. -->
<span id="Object11"><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline">
<mrow>
<mi>cos</mi>
<mrow>
<mo fence="true" form="prefix" stretchy="false">(</mo>
<mrow>
<mi>θ</mi>
</mrow>
<mo fence="true" form="postfix" stretchy="false">)</mo>
</mrow>
</mrow>
</math> </span><span class="text-T13"> makes a full trip from 1 to 0 in </span>
<!--Next 'span' is a draw:frame. -->
<span id="Object12"><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline">
<mrow>
<mn>0</mn>
<mo stretchy="false"></mo>
<mi>θ</mi>
<mo stretchy="false"></mo>
<mi>π</mi>
</mrow>
</math> </span><span class="text-T13">; </span>
<!--Next 'span' is a draw:frame. -->
<span id="Object13"><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline">
<mrow>
<mi>cos</mi>
<mrow>
<mo fence="true" form="prefix" stretchy="false">(</mo>
<mrow>
<mrow>
<mn>3</mn>
<mi>θ</mi>
</mrow>
</mrow>
<mo fence="true" form="postfix" stretchy="false">)</mo>
</mrow>
</mrow>
</math> </span><span class="text-T15"> makes </span><span class="text-T16">three</span><span class="text-T15"> such trips in the same span. And our rose has three peaks.</span></div>
<!--Next 'div' was a 'text:p'.-->
<div class="paragraph-P6"><span class="text-T17">By some horrible mathemagic, integrating what should be a half-turn integrates </span><span class="text-T18">the whole pattern</span><span class="text-T17">. As it turns out, this is true for every cosine rose: regardless of the multiplier, a full span of pi (not 2pi!) covers the entire shape. Because we only want one petal, we have to cut our</span><span class="text-T18"> bounds</span><span class="text-T19"> </span><span class="text-T17">in third: </span>
<!--Next 'span' is a draw:frame. -->
<span id="Object14"><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline">
<mrow>
<mrow>
<mfrac>
<mn>25</mn>
<mn>2</mn>
</mfrac>
<mrow>
<munderover>
<mo stretchy="false"></mo>
<mfrac>
<mrow>
<mo stretchy="false"></mo>
<mi>π</mi>
</mrow>
<mn>6</mn>
</mfrac>
<mfrac>
<mi>π</mi>
<mn>6</mn>
</mfrac>
</munderover>
<msup>
<mi>cos</mi>
<mn>2</mn>
</msup>
</mrow>
<mrow>
<mo fence="true" form="prefix" stretchy="false">(</mo>
<mrow>
<mrow>
<mn>3</mn>
<mi>θ</mi>
</mrow>
</mrow>
<mo fence="true" form="postfix" stretchy="false">)</mo>
</mrow>
<mi>d</mi>
<mi>θ</mi>
<mo stretchy="false"></mo>
</mrow>
<mrow>
<msubsup>
<mrow>
<mrow>
<mrow>
<mfrac>
<mn>25</mn>
<mn>24</mn>
</mfrac>
<mrow>
<mo fence="true" form="prefix" stretchy="false">(</mo>
<mrow>
<mrow>
<mn>6</mn>
<mrow>
<mi>θ</mi>
<mo stretchy="false">+</mo>
<mi>sin</mi>
</mrow>
<mrow>
<mo fence="true" form="prefix" stretchy="false">(</mo>
<mrow>
<mrow>
<mn>6</mn>
<mi>θ</mi>
</mrow>
</mrow>
<mo fence="true" form="postfix" stretchy="false">)</mo>
</mrow>
</mrow>
</mrow>
<mo fence="true" form="postfix" stretchy="false">)</mo>
</mrow>
</mrow>
</mrow>
<mo fence="true" form="postfix" stretchy="true">|</mo>
</mrow>
<mfrac>
<mrow>
<mo stretchy="false"></mo>
<mi>π</mi>
</mrow>
<mn>6</mn>
</mfrac>
<mfrac>
<mi>π</mi>
<mn>6</mn>
</mfrac>
</msubsup>
<mo stretchy="false"></mo>
<mfrac>
<mn>25</mn>
<mn>12</mn>
</mfrac>
<mi>π</mi>
</mrow>
</mrow>
</math> </span><span class="text-T20">. </span><span class="text-T21">And thats right!</span></div>
<!--Next 'div' was a 'text:p'.-->
<div class="paragraph-P8"><span class="text-T17">What if we integrated the entire shape and divided by three, as mentioned above? This gives us actually the same integral, with a different multiplier and different bounds: </span>
<!--Next 'span' is a draw:frame. -->
<span id="Object15"><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline">
<mrow>
<mrow>
<mfrac>
<mn>1</mn>
<mn>3</mn>
</mfrac>
<mfrac>
<mn>25</mn>
<mn>2</mn>
</mfrac>
<mrow>
<munderover>
<mo stretchy="false"></mo>
<mfrac>
<mrow>
<mo stretchy="false"></mo>
<mi>π</mi>
</mrow>
<mn>2</mn>
</mfrac>
<mfrac>
<mi>π</mi>
<mn>2</mn>
</mfrac>
</munderover>
<msup>
<mi>cos</mi>
<mn>2</mn>
</msup>
</mrow>
<mrow>
<mo fence="true" form="prefix" stretchy="false">(</mo>
<mrow>
<mrow>
<mn>3</mn>
<mi>θ</mi>
</mrow>
</mrow>
<mo fence="true" form="postfix" stretchy="false">)</mo>
</mrow>
<mi>d</mi>
<mi>θ</mi>
<mo stretchy="false"></mo>
</mrow>
<mrow>
<msubsup>
<mrow>
<mrow>
<mrow>
<mfrac>
<mn>1</mn>
<mn>3</mn>
</mfrac>
<mfrac>
<mn>25</mn>
<mn>24</mn>
</mfrac>
<mrow>
<mo fence="true" form="prefix" stretchy="false">(</mo>
<mrow>
<mrow>
<mn>6</mn>
<mrow>
<mi>θ</mi>
<mo stretchy="false">+</mo>
<mi>sin</mi>
</mrow>
<mrow>
<mo fence="true" form="prefix" stretchy="false">(</mo>
<mrow>
<mrow>
<mn>6</mn>
<mi>θ</mi>
</mrow>
</mrow>
<mo fence="true" form="postfix" stretchy="false">)</mo>
</mrow>
</mrow>
</mrow>
<mo fence="true" form="postfix" stretchy="false">)</mo>
</mrow>
</mrow>
</mrow>
<mo fence="true" form="postfix" stretchy="true">|</mo>
</mrow>
<mfrac>
<mrow>
<mo stretchy="false"></mo>
<mi>π</mi>
</mrow>
<mn>2</mn>
</mfrac>
<mfrac>
<mi>π</mi>
<mn>2</mn>
</mfrac>
</msubsup>
<mo stretchy="false"></mo>
<mfrac>
<mn>25</mn>
<mn>12</mn>
</mfrac>
<mi>π</mi>
</mrow>
</mrow>
</math> </span><span class="text-T17">. Exactly the same! Math is weird like that.</span></div>
<p class="paragraph-P8"><span class="text-T17">To avoid boundary hell in the future, Im just going to integrate whole shapes and divide by petals. Its much easier to wrap my head around why that actually works.</span></p>
<p class="paragraph-P8"><span class="text-T17"/></p>
<p class="paragraph-P8"><span class="text-T17">Stay tuned for Lagrange multipliers!</span></p>
</body>
</html>